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Topological approximations discussed in the preceeding paper are used for construction of topo­
logical energy hypersurfaces of chemical reactions on two levels of a sophistication. A method 
of a linear change of off diagonal matrix elements reproduces adequately Woodward-Hoffmann 
rules but it provides only qualitative information about energctical relations . A physically more 
rigorous hypothesis where the reaction driving force is a function of hybridization changes 
at reaction sites provides energy hypersurfaces which are correct from a quantitative viewpoint. 
The method suggested treats the total energy as a function of abstract reaction angles which 
reflect topological changes accompanying the reaction course. A reaction mechanisms analysis 
leads then to the analysis of topological energy hypersurfaces which can be treated similarly 
to that of conventional geometrical hypersurfaces. Formulas for atomic integrals necessary 
in the construction of Hartree-Fock and CI matrices are derived in the basis of reaction angles 
mentioned and approximations leading to the scmiempirical type of a calculation are discussed . 

In the previous paper!, the approximations were discussed which permit the separation of geo­
metric and topological information within the framework of quantum chemistry. These approxima­
tions allow the expression of matrix elements of quantum mechanical operators and the cor­
responding observables as functions of geometry-independent parameters which are transferable 
from one molecule to another. The influence of geometry can be treated as a perturbation. 
On the basis of theoretical and experimental arguments, it was shown that this "perturbation" 
may be neglected when investigating reactivity of molecules. The next step towards this aim is 
presented here, namely, structural, topological, geometry-independent variables are introduced, 
which form a basis for atomic molecular integrals. Expression of the total energy as a function 
of topological variables permits calculations of topological energy hypersurfaces and analysis 
of reaction mechanisms by means of optimization procedures along similar lines to those 
in conventional "geometrical" hypersurfaces. Such an approach has two positive features. 
First, it may contribute to a deeper understanding of structure-reactivity relationship because 
it can distinguish between "purely structural" and "purely spatial" effects. Second, it appears 
that topological calculation of a reaction coordinate is about two orders of magnitude faster 
than an equivalent geometry-based calculation. Moreover, energy minimization with respect 
to all structural parameters, calculation of both Hessian matrix and objective reaction coordinates 
free of chemical hysteresis and discontinuities can be performed with moderate computer-time 
consumption even for relatively large systems, i.e. systems containing 10 to 50 atoms which are 
of interest to organic chemists. 

As mentioned previously!, within the framework of the topological approximation, 
reactivity of molecules is studied on energy hypersurfaces which depend on elements 
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of the Hartree-Fock matrix (or on functions thereof) instead of on geometry co­
ordinates. The crucial problem in this approach is the relationship between the matrix 
elements of the forming and breaking bonds at an arbitrary point on the energy 
hypersurface. Two methods will be described in this paper. First, if we do not re­
quire quantitative information, the simplest relationship is represented by a simple 
linear dependence. This possibility was intensively tested in our Laboratory and a few 
results worth mentioning were obtained. The second method tested turned out to be 
significantly more useful. It is based on a hypothesis in which the driving force 
of chemical reactions can be expressed as hybridization changes at reaction sites. 
A detailed description of both methods follows. 

The Method of a Linear Change of Non-Diagonal Matrix Elements 

In this procedure 2 the reaction coordinate is a function of a single parameter R 
(0 ~ R ~ 1). The matrix elements of the bonds being formed are expressed as 

(1) 

whereas the elements of the bonds being broken have the following valid relationship: 

HJ1V = H~il - R) . (2) 

If H~v > 0 (Eq. (1)), then lobes of the same sign interact; such an interaction 
is bonding (supra-supra or disrotatory interaction); value H~v < 0 corresponds 
to interaction between lobes of opposite sign (supra-antara or conrotatory inter­
action). Introduct ion of a new parameter, p, permits us to generalize the procedure 
for non-concerted reactions. Then Eqs (1) and (2) assume the form: 

H I•v = H J1V max 0, --- , o (PR - 1) 
p - 1 

(3) 

HI1V = H~v max (0, 1 - pR) . (4) 

Evidently if 1 < p < 2, formation of the new bond starts only after an induction 
period but before complete scission of the respective bond in the reactant. If p = 2, 
then the reaction under study is a pure two-step reaction, i.e. first the critical bond 
of the reactant is completely broken and in a successive step the new bond is formed. 
A proper choice of p-values for bonds formed permits one to estimate the relative 
importance of various synchronous and two-step mechanisms. 

The described procedure was used to investigate fourty ground state and photo-
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chemical reactions. Even though this procedure is poor in comparison with the second 
method presented infra, some useful results have been obtained: 

(i) The Woodward-Hoffmann rules are completely reproduced . Matching and 
crossing of bonding and antibonding MO's characterize allowed and forbidden reac­
tions . Crossing or avoided crossing is typical for all forbidden reactions including 
those in which reactants and products do not possess any element of symmetry. 
This supports the opinion 3 that the Woodward-Hoffmann rules are not consequences 
of symmetrical properties of MO's but that they are due rather to topological pro­
perties. Moreover, correlation diagrams based on symmetry considerations can be 
regarded as a tool for correct assignments of MO's of the reactant and product 
rather than a principle governing the se rule s. 

(ii) A misinterpretation of the butadiene-bicyclobutane reaction 4 in terms of the 
Woodward-Hoffmann rules was discovered. According to our calculation, the reac­
tion [n2. + n2a] is allowed in both the ground and the first excited states. 

(iii) Calculations have shown that vanishing activation energy is connected with 
allowed pericyclic reactions of systems possessing three or four reaction sites. Forma­
tion of larger rings is associated with an energy barrier in both ground and excited 
states. Calculations on electrocyclic reactions suggest that formation of the largest 
possible ring is preferred (e.g. cyclohexa[1,3]diene rather than 3-vinylcyclobutene 
is formed from 1,3,5-hexatriene). The opposite was found with cyclo-addition reac­
tions, i.e. the tendency was to form the smallest possible ring. Specifically, if supra­
-antara formation of a four-membered ring is considered to be sterically hindered4 

then it is expected that the ground-state reaction between two molecules of butadiene 
gives 3-vinylcyclohexane rather than cycloocta[l ,4]diene which is in agreement with 
experiments. Moreover, the calculations suggest that energy barriers of concerted 
electrocyclic reactions are lower than those of cyclo-additions. The same applies 
to cyclo-additions and sigmatropic rearangements; the former possess lower barriers. 

(iv) The calculations do not permit one to distinguish supra- and antara-approaches 
for reactions proceeding without the formation of a cyclic intermediate . This ap­
plies also to the cases where the forming and breaking bonds are exocyclic. Con­
cretely, no decision can be made concerning stereospecificity of the chloride anion 

release from 3-chlorocyclopropene. 

(v) Preference of two-step mechanisms to synchronous and concerted ones is a ty­
pical feature of excited state reactions. Calculations suggest , for example, that the 
first step of the butadiene dimerization is the formation of a biradical by the approach 
of two terminal atoms; with the valence isomerization benzene-benzvalene the initial 
step is represented by formation of a biradical by joining the atoms in positions 1 
and 3. Lack of experimental information prevents a decision as to whether it is a cor­

rect prediction or an artifact of the method. 
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Hybridization Change on Reaction Sites as the Driving Force of a Reaction 

The procedure described in the previous paragraph suffers from two shortcomings_ 
First, it is hardly possible to explain theoretically the assumed linear relationship 
between the matrix elements of the forming and breaking bonds. Second, the energy 
of a molecule is expressed as a function of a single parameter, R, which prevents the 
proper description of reactions where bonds are not synchronously formed and 
broken. A firm basis for the topological study of energy hypersurfaces is obtained by 
adopting a hypothesis that hybridization change on reaction sites represents a more 
essential feature of chemical reactions than bonds forming and breaking. For 
example, not only the Diels-Alder reaction but also the valence isomerization of 
benzene is characterized by gradual transformation of delocalized n-orbitals in re­
actants into localized Sp3 orbitals in products. Orbital hybridization, XIl , on the re­
action site fl, during the reaction course, can be expressed as a linear combination 
of hybrids in reactant (r), XIl" and product (p), Xllp : 

(5) 

It is assumed that f X~"X~IP dT ~ O. 

If the orbitals XIl' and XIlP are orthogonal then from the orthogonalization condition 
the following holds 

(6) 

It follows that when the individual reaction site is considered, say fl, energy is a func­
tion of only one expansion coefficient of Eq. (5), say a. In the Diels-Alder reaction 
energy will depend on four expansion coefficients of AO's localized on terminal 
carbon atoms of a diene and a dienophile. Therefore, the topological hypersurface 
of the ethylene-butadiene supersystem depends only on four variables in contrast 
to the common geometrical hypersurface where the number of variables amounts 
to 42. Let us add that standard orthogonalization techniques 6 may be used if the 
orbitals Xllf and XIlP are not strictly orthogonal. In other words, the normalization con­
dition (6) does not limit the general applicability of the method. 

As previously mentioned just one of the coefficients of Eq. (6) is independent. It is 
not convenient to express energy, for example, by means of vector of coefficients 

a == {all} because the evaluation of coefficients of the vector b == {bll } by means 
of Eq. (6) is ambiguous. It turns out, however, that a trigonometric tra115formation 
can be successfully applied which permits one to express each XIl (Eq. (3)) as a function 
of a single angle variable, CfJ Il : 

(7) 

Collection Czechoslov. Chem. Commun. [Vol. 451 [19801 



Molecular Topology and Chemical Reactivity 2467 

Clearly, if ([1~ = 0, X~, = Xw For ([1~1 < 0, the signs or the terms of Eg. (7) arc opposi te 
and there is a nodal plane between orbitals X~" and XI'P of the formin g or break ing 
bond. This is the case with antarafacial or conrotatory interacti ons and SN2 rearrange­
ments; an interaction takes pl ace on the lobe bearing an opposi te ~; jgn than that of the 
lobe of the releasing group. For ([111 > 0, the inte raction takes place on lobes of the 
same sign and there is no nodal plane separating the forming and breaking bonds. 
This applies to suprafacial or disrotatory interactions. If I(PIII = n12 , XI' = XI'P re­
gardless of whether the suprafacial or antarafacial route is applicable. Therefore, the 
absolute value of ([11' is a measure of the extent of conversion from reactant to 
product and the sign of ([11' expreoses the topological stereospecificity of the re­
action under study. The vector ([1 == {([1II} is named the vector or reacti on angles. 

Expressions Jor Monocen/ric and Bicen/ric Integrals in a Reaction Angle Basis 

It follows from Eg. (7) that for the one-electron Hamilt onian, h , the following ex­
pressions are valid 

f X:hXI' dr = cos 2 ([11' f X:,hXw dr + sin
2 

([11' f X:p hXl'p dr + 2 sin (PII cos (Ill' f XI~,hX llp dr 

f X:hXv dr = cos ([1~ cos ([1v f X:,hXv, dr + sin ([1~ sin ([1v f X:phXvp dr + 

+ cos ([1~ sin (Pv f X:,hXvp dr + sin ([1~ cos ([1v f X:phXv, dr . 

(8) 

(9) 

Egs (8) and (9) are generally valid for both semiempiric and nonempiric methods 
The essential feature of the topological approximation is the omiss ion of matrix 

elemellts between non-neighbouring AO's and also 

(10) 

With respect to Eg. (10), Egs (8) and (9) are simplified as follows 

(11) 

Hl'v = COS ([1 l'cos ([1yHl'v" + sin ([1l'sin ([1vHl'v,p, (12) 

where HI'I' and H I'y are the matrix elements of the one-electron operator in an arbitrary 
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point on the topological hypersurface . H"" ." H"v.r and H"I'.p, Hl'v.p are the elements 
in the basis of hybrid orbitals of reactants and products, respectively . The first 
term on the right side of Eq. (12) applies if the bond between atoms!-L and v is broken 
the latter one if the corresponding bond is formed. In Eqs (11) and (12) an essential 
positive feature of the topological approach is included, namely the wave function, 
energy and all values of "observable" for an arbitrary point in a topological hyper­
space can be obtained from matrix elements of reactants and products. In other 
words the necessi ty to calculate atomic integrals at every point on the hypersurface 
is avoided. Moreover, calculations of the gradient and Hessian matrix are simple; 
whereas atomic integrals depend on coordinates in the "geometrical" approximation, 
they are mere constants within the topological approximation. Accordingly, the eva­
luation of derivatives of matrix elements with respect to the reaction angles is easy. 

If g stands for the electron repulsion operator, it follows from Eq . (7): 

fX;(1) X:(2) gXQ(1) X,,(2) dT! dT2 = f[cos qJ"X;r(l) + sin qJ"X;p(1)] 

[cos (PvX~r(2) + sin qJvX:p(2)] g[ cos qJQXQr(1) + sin qJQXQp(1)] 

[cos (P"X"r(2) + sin qJ"X"p(2)] dT! dT2 . (13) 

After multiplication on the right-hand side of Eq. (13), the trigonometric terms may be 
factored. When the topological approximation (Eq. (10)) is introduced, many terms 
vanish even on the nonempirical level. The ZDO approximation is usualiy adopted 
for semiempirical calculations. Eq. (13) has then the form: 

(JLV\g\ {LV) = fg[cos2 (PI'X;r(l) Xl'll) + sin2 qJI'X:p(l) Xl'p(1)] . 

. [cos2 qJvX~r(2) Xvr(2) + sin2 qJvX';p(2) Xvp(2)] dT! dT2 ' (14) 

When using an analogous relationship as (10) for the ')I-integrals concerning orbitals 
located on different atoms, namely 

the following expressions are obtained: 
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where '}'~~ and y~v are the diagonal and nondiagonal elements of the electron repulsion 
operator in an arbitrary point on the topological hypersurface; integrals on the right­
-hand side are repulsion integrals of reactants and products. Only one term on right 
s ide of Eq . (17) is nonzero simila rly as with Eq. (12) . The integral '}'~II " P is defined 
as follows : 

(18) 

The formulas (I6) and (17) ca n be used for reactivity ca lculations on a topological 
energy hypersurface within the framework o f SCF and LCI approximations. The 
following feature of Eq . (16) require s a comment. If, in Eq . (11) , HIII'o' = H~~,p. 
then the diagonal matrix element H ~~ re mains constant 011 the whole topological 
hypersurface. According to Eq . (16). however. the monocentric I' integral is not 

constant even if I' ~II " = I' ~II , P ' As I' ~II " P is smaller than any of 1'1111 . ' a nd I' II II,P' the fol­
lowing relationship is genera lly sati sfied: 

The lowest absolute value of thi s integral amounts to rr/4. 

As already mentioned, the negative value of the reaction angle ({JI' means that the 
product attacks the reaction site from the opposite side, i.e., the lobe of AO is ap­
proached which is opposite to that one which is free by the releasing group. It is 

apparent from Eqs (11)-(17) that the HII~ ' I' ~I' and I'~v values depend only on the 
absolute value of the angle <p~; stereospecific resolution must be based on the sign 
change with the H I'V element. Specifically, with a pericyclic supra-an tara reaction 
a ring is formed with a single negative nondiagonal element, i.e . a Mobius ring , which 
fit s the idea presented by Zimmermann 7. Let us note that the stereospecificity of the 
reaction course may already be interpreted in terms of a one-electron Hamiltonian 
and that introduction of electron repulsion does not qualitat ively influence the 

interpretation. 
In some instances an extension of the theory is desirable. This is mainly true for 

reactions in which at some reaction site several bonds are formed at differing rates. 
Such an extension is particularly important in the following situations: 

(i) During the reaction course a bridged structure is formed as e.g ., with non­
classical ions and three-membered rings . This case is rather rare (for some special 
addition reactions see ref.S). 

(ii) When making a decision about various reaction mechanisms, it is desirable 
to consider simultaneously all possible bond formations (in accordance with the 
mechanisms under consideration) and to select the "correct" mechanism by means 
of a computer on the basis of optimization of the topological energy hypersurface. 
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(iii) Finally, the extended theory allows comprehension of secondary interactions 
(e .g., preference of the en do isomer in the Oiels-Alder dimerization of butadiene), 
solvent effects, steric effects etc. 

Let us denote XII( the AO of the site Jl in the reactant , X~p, .. . , X~p are AO's of a ll 
poss ible elementary components (cf. Part I) of products (one AO for each individual 
elementary component, i.e. cr, n, !S, originating on the site Jl. In such a case Eq. (7) 
may be generalized as follows: 

n 

Xfl = cos <P~Xflr + sin <P~ I (n sin <P~ n cos <p~X~p) . {I 9) 
i = I j I 

The angle <P~ is again named the reaction angle because its absolute value is, as before , 
a measure of the reaction course. The angles <P~ to <P~ are named discrimination 
angles because they determine which of the possible new bonds are formed pre­
ferentially . The choice of discrimination angles can be made in several ways. 

The only requirement is that the functions Jj; i = n sin <P~ n cos <P~' i = < 1, n> 
j I 

have to form an orthonormal set. An algorithm has been developed for computational 
purposes; its n elementary components are defined as follows: 

a) sin <P~ for X!p , cos <P~ for X~P ' sin <P~ for X~p etc. up to exhausting of all pairs 
of orbitals , XflP ' except the eventual last (odd) orbital. 

b) sin <P~ for X~p and X~P' cos <P:. for X~P and X~P ' sin <p~-:1 for X~P and x~petc, up to 
exhausting of all quadruplets of orbitals, XflP ' except the remainder of which are not 
divisible by four. 

c) The angles for products of 8, 16, 32, etc. of orbitals have been chosen in an ana­
logous manner. The discrimination angles defined in this way are particularly suitable 
for the purpose of programing. If 11 = 2, it is obtained: 

if n = 3, then 

Xfl = cos <p~Xfl' + sin <p~ sin <p~ sin <P~X~p + sin <P~ cos <P~ . 

. sin <P~X~p + sin <pe cos <P~X~p , 

(20) 

(21) 

when introducing expressions (19) or (20), (21) instead of (7) into Eq. (8), (9) or (13) 
and using the topological approximation (Eqs (10) and (15)) as well as the ZOO 
approximation in case of a semiempirical version, the formulas for calculating 
atomic integrals , for the generalized case, are obtained. Eqs (11) and (16) remain 
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unchanged and Eqs (12) and (17) assume now the following form: 

H~v = cos CP~ cos CP~H,.v .r + sin (p~ sin cP~ n si n (p!. n cos cpi.· 
j I 

. n si n cp~ n cos (p :~'Hfl V.P . (22) 
k m 

y~v = cos 2 Cp~ cos2 CP~Yflv . r + si n2 CP~ sin 1 cpe n sin 2 Cp~ n sin 2 cp~ . 
j k 

. n cos2 (p:. n cos 2 cp~'Y~V.p . (23) 
I OJ 

The angles defined by Eq. (19) are generated automatica lly by a computer program 
ZUZANKA written for this purpose. The program provides all atomic integrals 
and their first and second derivatives . 

Topological Study of Energy Hypersurfaces 

For the total energy in any approximation on the Hartree-Fock level the following 

expression is valid 

E = t I I [P~v(H~v + FflV) + tZflZVR;;]. (24) 
~ v 

where 

F~v = HflV + I IPI.a[Ctl),lgl VtT) - t(J1Al gl tTv)] (25) 
• a 

H ~v = ft>:hcPv dr (26) 

(JiA\g\ VtT) = ff cP:(l) cPt(2) gcPv(l) cPa(2) dr 1 de2 (27) 

PI.a = 2 IC~Cia . (28) 

where the symbols have their usual meaning9
. By transforming molecular integrals 

into the basis of atomic integrals , by assuming the proportionality R;v1 
'" Y~v (the 

Dewar's positron approximation 10) and by expressing atomic integrals by means 
of formulas (11), (16), (22) and (23), the expression for the total energy, E, can be 
obtained in terms of reaction and discrimination angles and matrix elements for the 
reactant and for all considered products . As the matrix elements expressed in the 
basis of atomic localized orbitals remain unchanged during the reaction course, 
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it is possible to describe the energy hypersurface simply as a function of the vector 
of reaction angles and the matrix of discrimination angles. An energy hypersurface 
defined in such a way permits use of all the well-known procedures, elaborated for 
analysis of geometry hypersurfaces and for geometrical investigation of reaction 
mechanisms. As the atomic integrals of the topological approximation are not 
functions of the reaction and discrimination angles, the first and second derivatives 
with respect to the topological parameters can be obtained rather easily by dif­
ferentiation of formulas (11), (16), (22) and (23). It turned out that the Murtagh-Sar­
gent!! method was especially useful for energy minimization with respect to all 
parameters. The Levenberg-Marquardt l2 numerical method is suitable for searching 
for stationary points. In the calculation of the topological reaction coordinate 
specific problems exist which are however different from those inherent in geometric 
methods . It is obvious from Eqs (22) and (23) that formation of a bond between reac­
tion sites Jl. and v is topologically described as a function of at least two angles, 
<P~ and <p~, whereas in the geometrical approximation by means of a single internal 
coordinate r ~V' This circumstance is inconvenient for graphical maping of topological 
hypersurfaces as well as for calculating the reaction coordinate by means of the De­
war method 13. The same applies to the procedure described in ref. 14

. The calculation 
of the elements of the Hessian matrix has to be done numerically and, moreover, 
it is sometimes made complicated because of artifacts of a mathematical nature. 

Recently the least motion hypothesis!5 was introduced for calculations of reaction 
coordinates of ab initio potential hypersurfaces. Internal energy of a mole.~ule was 
expressed as a function of generalized interatomic distances and points which fit 
the reaction coordinate were searched for by the least squares method. As the number 
of independent variables was redundant it was necessary to use empirical weight 
factors. The use of the least motion hypothesis within the framework of the topo­
logical approximation is significantly easier and the search for points fitting the reac­
tion coordinate the following mathematical procedure may be used: 

a) The difference vector defined as the difference between the rea~tion angles 
of products and reactants is calculated. 

b) All components of the vector are divided by the number of required reaction 
steps; in this way the vector of the driving force, f, is obtained. 

c) After performing energy optimization in the i-I step, the calculated topological 
coordinates are shifted by a vector f. 

d) From the gradient obtained for angles in item c) the component parallel to the 
vector fis eliminated by projection (e.g., projection operator method may be used); 
minimization of the total energy of a molecule is carried out by the Murtagh-Sargent 
method until the gradient component, which is orthogonal to f vanishes; in such a way 
a point on the topological coordinate is obtained. 
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e) Stationary points on the obtained one-dimensional curve are obtained by a com­
plete optimization of topological parameters from points calculated in item d) which 
are the closest to the extremals. For these points the Hessian matrix is also calculated 
in order to be able to decide whether the given stationary point is a minimum, ma­
ximum or a saddle point on the topological hypersurface. 

The described procedure can be used for topological investigation of the following 
question: What is the ideal, i.e. the energetically most convenient transformation 
of a set of reactants A to a set of products B? The other question is important from 
the practical chemical viewpoint, namely, which transformation of A is energetically 
the most favourable one considering all possible products. In such a case it is neces­
sary to suggest, for a given starting set of elementary components of reactants, 
the reaction and discrimination angles for formation of all potentially possible 
bonds. The vector of simultaneous change of reaction angles serves as a driving 
force, the discrimination angles are optimized in each reaction step. This procedure 
guarantees that, on the basis of energy optimization , such discrimiaation angles will be 
chosen, which correspond to the optimal reaction coordinate. Therefore, in this 
way the optimal reaction mechanism is found. Computational details concerning 
the above mentioned procedures will be described in the next parts of this series. 
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